Policy MP-048

Origination Date: 10/23/19
Reviewed/Revised Date: 10/23/19
Next Review Date: 10/23/20
Current Effective Date: 10/23/19

Disclaimer:
1. Policies are subject to change without notice.
2. Policies outline coverage determinations for U of U Health Plans Commercial, and Healthy U (Medicaid) plans. Refer to the “Policy” section for more information.

Description:
Psoriasis is a skin condition where the body makes new skin cells in days rather than weeks. When the cells pile up on the surface of the skin, thick red and white scaly, itchy patches develop known as plaques or plaque psoriasis. They may appear in single patch or join together and vary in sizes.

Atopic dermatitis (eczema) is a condition that makes a person’s skin red and itchy. It's common in children but can occur at any age. Atopic dermatitis is longer lasting (chronic) and tends to flare periodically. It may be accompanied by asthma or hay fever. No cure has been found for atopic dermatitis. But treatments and self-care measures can relieve itching and prevent new outbreaks. For example, it helps to avoid harsh soaps, moisturize your skin regularly, and apply medicated creams or ointments.

Actinic keratoses (AKs or solar keratoses) are sun-induced skin lesions which may evolve into skin cancer. Cryotherapy is commonly used to treat individual lesions. However, this treatment fails to address neighboring sun-damaged skin, to clear both visible and subclinical lesions. “Field therapy” is recommended as a more effective treatment. This therapy involves application of topical agents such as 5-flourouricil or imiquimod or photodynamic therapy using 5-aminolevulinic acid (ALA), or methyl aminolevulinate (MAL) as the skin sensitizers. These agents are preferentially taken up by the abnormal cells and the light therapy leads to activation of the chemical inside the cell and cellular destruction.

One therapy which has shown some effectiveness in both psoriasis and atopic dermatitis is phototherapy. Phototherapy (also called light therapy and actinotherapy) involves exposing the skin to wavelengths of ultraviolet A light (UVA) or ultraviolet B light (UVB), under the supervision of a health care provider, for a set length of time on a regular schedule and may be done in a doctor’s office, clinic, or at home. Phototherapy can be delivered in different ways. It can encompass the use of visible light, photodynamic therapy, photothermolysis, and laser.
therapy. The beneficial effect of using light therapy for the treatment of psoriasis is attributed primarily to UVB, which penetrates the skin and slows the growth of affected skin cells.

Psoralen plus ultraviolet A (PUVA) is a type of photochemotherapy that uses radiation and the administration of psoralens, a class of phototoxic plant-derived compounds, with an exposure to UVA by using sunlight or artificial light. Psoralens makes the skin more sensitive and responsive to this wavelength of light. They may be taken orally, applied topically or patients can soak in a bath of Psoralens solution. PUVA has most commonly been used to treat severe psoriasis, for which there is no generally accepted first-line treatment. However, the requirement of systemic exposure and the higher risk of adverse reactions (including a higher carcinogenic risk) have generally limited PUVA therapy to patients with more severe cases. Potential long-term effects include photo-aging and skin cancer, particularly squamous cell carcinoma (SCC) and possibly malignant melanoma.

Excimer lasers emit a narrow beam of UVB light, from a handheld unit, which results in a much higher concentration of UVB exposure than in the standard phototherapy unit. The use of excimer laser can reduce the harmful effects of UV radiation by limiting the number of exposures needed and treating only the affected areas of the body.

Policy Statement and Criteria

1. Commercial Plans

 U of U Health Plans considers office-based or home phototherapy (e.g., Actinotherapy, type A ultraviolet (UVA) radiation; type B ultraviolet (UVB) radiation; and combination UVA/UVB) and photochemotherapy (e.g., psoralens (P) and UVA, known as PUVA and combinations of P/UVA/UVB) medically necessary when there is failure, intolerance, or contraindication to conventional medical management* for the following dermatological conditions:

 A. Connective tissue diseases involving the skin (e.g., cutaneous graft vs. host disease [GVHD], localized scleroderma, lupus erythematosus)
 B. Cutaneous T-cell lymphoma (CTCL) (e.g., mycosis fungoides)
 C. Lichen planus
 D. Photodermatoses (e.g., polymorphic light eruption, actinic prurigo, chronic actinic dermatitis)
 E. Psoriasis
 F. Atopic dermatitis (i.e., atopic eczema) if the following criteria are met:
 i. Involvement is estimated to be >10% of the body surface area (BSA) AND one of the following:
 a) Eczema Area and Severity Index (EASI) score >16
 b) Investigators Static Global Assessment (ISGA) > 3
 c) Patient-Oriented Eczema Measure (POEM) > 8
 d) Scoring Atopic Dermatitis (SCORAD) index >15
Clinical Rationale
A significant body of evidence exists supporting the use of phototherapy for moderate-severe psoriasis and moderate to severe atopic dermatitis.
Psoriasis Hayes completed are Technology Brief on home UBV phototherapy for psoriasis in 2015. The authors noted that even though there is a low quality overall body of evidence, data suggests home UVB treatment of moderate to severe psoriasis is effective and well tolerated. Patient adherence to the home regimen was generally high and there were no major safety issues identified. In addition, patients were very satisfied with the convenience and outcomes from using home UBV treatments.

In 2018, the AAD made the following statement "topical agents form the mainstay of treatment in psoriasis and all other treatment modalities are often used with concomitant topical therapy. Emollients increase the transmission of UV radiation by altering the optical properties of psoriatic skin lesions and improving therapeutic efficacy. Application of a thin layer of emollient such as petrolatum before UV exposure is traditionally used. However, there are no randomized controlled studies to prove the benefit of concomitant use of emollients with UVB. It is important to pay attention to the application of sunscreens or salicylic acid containing preparations that may interfere with the penetration of UV radiation. UV blocking properties may be used to cover uninvolved skin with preparations such as zinc oxide to prevent unnecessary exposure and adverse effect".

The National Institute for Health and Care Excellence (NICE) 2012 (updated in 2017) included phototherapy (broad or narrow-band) UVB and PUVA as a treatment option for psoriasis. The guidelines suggest people with plaque or guttate-pattern psoriasis that cannot be controlled with topical therapy, use phototherapy. To treat palmoplantar pustulosis consider psoralen (oral or topical) with local PUVA irradiation. However, when considering PUVA for psoriasis (plaque type or localized palmoplantar pustulosis) discuss other treatment options and associated risk of increased skin cancer. NICE also stated that phototherapy should not be used routinely as maintenance therapy.

Atopic dermatitis The American Academy of Dermatology (AAD) (2014) recommended phototherapy under the guidance of a physician, as a second line of treatment for atopic dermatitis (AD), only after failure of the first line of therapy (emollients, topical steroids, and topical calcineurin inhibitors). Phototherapy may be used as maintenance therapy in patients with chronic disease. The light modality, dosing and scheduling is based on various factors, such as cost, phototherapy technique, patient skin type, skin cancer history, use of photosensitizing medication, minimal erythema dose (MED), and/or Fitzpatrick skin type. Although AAD stated that home phototherapy under the direction of a physician may be considered for a subset of patients who are unable to go to an office setting, they note that there are no studies that document the safety and efficacy of home phototherapy, or compare home therapy to in-office phototherapy outcomes for AD. Due to the lack of evidence, laser therapy is not a recommended treatment modality for atopic dermatitis.

Actinic Keratosis (AKs) According to the AAD (2019), to effectively treat AKs, you might be prescribed procedures, medications, or both. The most common form of treatment is cryotherapy, usually used if there are only a few visible AKs; to treat multiple AKs including ones you can’t see yet, medication therapy that you apply to the skin may be used; shave excision and curettage is recommended for extremely thick AK’s, that may or have not responded to cryotherapy or medication therapy; chemical peel or dermabrasion may be used for larger affected areas; and photodynamic therapy (PDT) is used for patients whose AKs return after treatments or continue to produce new AKs.

A 2019 randomized trial (Jansen, et. al.) investigated four frequently used treatment approaches for multiple AKs in a continuous area. A total of 624 patients were randomly assigned treatment with 5% fluorouracil cream, 5% imiquimod cream, methyl aminolevulinate photodynamic therapy (MAL-PDT), or 0.015% ingenol mebutate gel from November 2014 through March 2017. After treatment ended, patients were tracked at the 12 month mark. The cumulative probability of remaining free from
treatment failure was significantly higher among patients who received fluorouracil (74.7%; 95% confidence interval [CI], 66.8 to 81.0) than among those who received imiquimod (53.9%; 95% CI, 45.4 to 61.6), MAL-PDT (37.7%; 95% CI, 30.0 to 45.3), or ingenol mebutate (28.9%; 95% CI, 21.8 to 36.3). As compared with fluorouracil, the hazard ratio for treatment failure was 2.03 (95% CI, 1.36 to 3.04) with imiquimod, 2.73 (95% CI, 1.87 to 3.99) with MAL-PDT, and 3.33 (95% CI, 2.29 to 4.85) with ingenol mebutate (P≤0.001 for all comparisons). The authors concluded that 5% Fluorouracil cream was the most effective treatment in patients with multiple AKs on the head at 12 months after treatment ended.

In 2014, a systematic review and meta-analysis (Patel et. al.) compared the effectiveness of PDT and cryotherapy for the treatment of AKs. The meta-analysis consisted of 641 participants, with a total of 2174 AKs treated with cryotherapy and 2170 AKs treated with PDT. Compared with cryotherapy, the pooled relative risk for the meta-analysis for complete response (lesion clearance) was 1.14 (95% CI, 1.11-1.18) at 3 months after treatment. Due to the lack of studies limited conclusions were made regarding treatment of AK’s in areas other than the head and scalp. In conclusion, PDT has a 14% better chance of complete lesion clearance at 3 months for thin AKs on the face and scalp compared to cryotherapy.

Another systematic review and meta-analysis (Gupta, et. al., 2012) assessed the effects of topical, oral, mechanical, and chemical interventions for the treatment of AKs. A total of 83 RTCs which included 10,036 patients were included. The RCTs covered 18 topical treatments, 1 oral treatment, 2 mechanical interventions, and 3 chemical interventions, including photodynamic therapy (PDT). The primary outcome significantly favored 4 field-directed treatments: 3% diclofenac in 2.5% hyaluronic acid (RR 2.46, 95% CI 1.66 to 3.66), 0.5% 5-fluorouracil (RR 8.86, 95% CI: 3.67 to 21.44), 5% imiquimod (RR 7.70, 95% CI 4.63 to 12.79), and 0.025% to 0.05% ingenol mebutate (RR 4.50, 95% CI 2.61 to 7.74) and PDT with the following photosensitizers: 3% diclofenac in 2.5% hyaluronic acid (RR 2.46, 95% CI 1.66 to 3.66), 0.5% 5-fluorouracil (RR 8.86, 95% CI: 3.67 to 21.44), 5% imiquimod (RR 7.70, 95% CI 4.63 to 12.79), and 0.025% to 0.05% ingenol mebutate (RR 4.50, 95% CI 2.61 to 7.74). The authors concluded that for individual lesions, treatment with PDT appears more effective and has a better cosmetic outcome than cryotherapy. For field-directed treatments, diclofenac, 5-fluorouracil, imiquimod, and ingenol mebutate are good options associated with different side-effects and cosmetic results. Thus, the choice of treatment option for AKs depends on the number of lesions, individual's desired results, and tolerance to the treatments. However, more studies for direct comparisons between these treatments are needed to determine the best therapeutic approach.

Other Conditions Wang et. al., conducted a Cochrane systematic review in 2017 of RCTs evaluating phototherapy for the treatment of foot ulcers in adult diabetics. The review included 8 trials with 316 participants. The studies compared phototherapy with sham phototherapy, no phototherapy, or other physical therapy modalities; different forms of phototherapy; or phototherapy of different output power, wavelength, power density, or dose range. Eight studies (n=316) met inclusion criteria. No studies reported valid data for time to complete wound healing. The quality of the evidence was considered low due to small sample sizes, methodological flaws and unclear or high risk of bias. The authors concluded that in order to confirm whether phototherapy is an effective treatment option for foot ulcers in people with diabetes, large, well-designed randomized controlled trials are needed.

Another systematic review (Simonsen et. al., 2017) assessed literature for treatment options in patients with uremic pruritus. This review of 44 RCTs included 39 different treatments (Gabapentin, pregabalin, mast cell stabilizers, phototherapy, hemodialysis modifications, and multiple other systemic and topical treatments) and evaluated UV-B to UV-A therapy and narrow-band UVB. Dosages varied based on the patient’s skin characteristics. Using broadband UV-B indicated a significant benefit in favor of UV-B.
therapy over UV-A. However, comparing narrow-band UV-B to UV-A showed no statistically significant benefit. The authors concluded, with the exception of gabapentin, the current evidence for treatments of uremic pruritus is low. Therefore, large, simple, rigorous, multiarm RCTs are needed to support the effectiveness of phototherapy and other treatments in uremic pruritus.

As for tanning beds the National Psoriasis Foundation (NPF), the American Academy of Dermatology (AAD), the U.S. Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC) do not support the use of tanning beds and sun lamps as a substitute for phototherapy (even with a prescription and under the supervision of a physician). The ultraviolet radiation from these devices can damage the skin, cause premature aging and increase the risk of skin cancer.

In their guidelines for the treatment of primary cutaneous lymphomas, the National Comprehensive Cancer Network® (NCCN®) (2019) lists phototherapy as treatment options for mycosis fungoides and Sezary syndrome recommending UVB and nbUVB for patch/thin plaques and PUVA for the treatment of thicker plaques. Treatment varies based on the disease stage.

Applicable Coding

<table>
<thead>
<tr>
<th>CPT Codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96567</td>
<td>Photodynamic therapy by external application of light to destroy premalignant lesions of the skin and adjacent mucosa with application and illumination/activation of photosensitive drug(s), per day</td>
</tr>
<tr>
<td>96573</td>
<td>Photodynamic therapy by external application of light to destroy premalignant lesions of the skin and adjacent mucosa with application and illumination/activation of photosensitizing drug(s) provided by a physician or other qualified health care professional, per day</td>
</tr>
<tr>
<td>96574</td>
<td>Debridement of premalignant hyperkeratotic lesion(s) (ie, targeted curettage, abrasion) followed with photodynamic therapy by external application of light to destroy premalignant lesions of the skin and adjacent mucosa with application and illumination/activation of photosensitizing drug(s) provided by a physician or other qualified health care professional, per day</td>
</tr>
<tr>
<td>96900</td>
<td>Actinotherapy (ultraviolet light)</td>
</tr>
<tr>
<td>96912</td>
<td>Photochemotherapy; psoralens and ultraviolet A (PUVA)</td>
</tr>
<tr>
<td>96913</td>
<td>Photochemotherapy (Goeckerman and/or PUVA) for severe photo-responsive dermatoses requiring at least 4-8 hours of care under direct supervision of the physician (includes application of medication and dressings)</td>
</tr>
<tr>
<td>96920</td>
<td>Laser treatment for inflammatory skin disease (psoriasis); total area less than 250 sq cm</td>
</tr>
</tbody>
</table>
Laser treatment for inflammatory skin disease (psoriasis); 250 sq cm to 500 sq cm

Laser treatment for inflammatory skin disease (psoriasis); over 500 sq cm

HCPCS Codes

E0691 Ultraviolet light therapy system, includes bulbs/lamps, timer and eye protection; treatment area 2 square feet or less

E0692 Ultraviolet light therapy system panel, includes bulbs/lamps, timer and eye protection, 4 foot panel

E0693 Ultraviolet light therapy system panel, includes bulbs/lamps, timer and eye protection, 6 foot panel

E0694 Ultraviolet multidirectional light therapy system in 6 foot cabinet, includes bulbs/lamps, timer and eye protection

J7308 Aminolevulinic acid HCl for topical administration, 20%, single unit dosage form (354 mg)

J7309 Methyl aminolevulinate (MAL) for topical administration, 16.8%, 1 g

J7345 Aminolevulinic acid HCl for topical administration, 10% gel, 10 mg

Not Covered

96999 Unlisted special dermatological service or procedure *(may be used in laser therapy for vitiligo, since there is no specific code)*

References:

Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.

U of U Health Plans makes no representations and accepts no liability with respect to the content of any external information cited or relied upon in this policy. U of U Health Plans updates its Coverage Policies regularly, and reserves the right to amend these policies without notice to health care providers or U of U Health Plans members.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without permission from U of U Health Plans.

“University of Utah Health Plans” and its accompanying logo, and its accompanying marks are protected and registered trademarks of the provider of this Service and or University of Utah Health. Also, the content of this Service is proprietary and is protected by copyright. You may access the copyrighted content of this Service only for purposes set forth in these Conditions of Use.

© CPT Only – American Medical Association