Proton Beam Therapy

Policy MP-009

Origination Date: 7/25/18
Reviewed/Revised Date: 8/21/19
Next Review Date: 8/21/20
Current Effective Date: 8/21/19

Disclaimer:
1. Policies are subject to change in accordance with State and Federal notice requirements.
2. Policies outline coverage determinations for U of U Health Plans Commercial, and Healthy U (Medicaid) plans. Refer to the “Policy” section for more information.

Description:
Proton beam radiation therapy (PBRT) is a type of external beam radiation therapy (EBRT) that utilizes protons (positively charged subatomic particles) that are precisely targeted to a specific tissue mass. Proton beams have the ability to penetrate deep into tissues to reach tumors, while delivering less radiation to superficial tissues such as the skin. This may make PBRT more effective for inoperable tumors or for those individuals in which damage to healthy tissue would pose an unacceptable risk.

Proton beams have less scatter than other sources of energy such as gamma rays, x-rays, or electrons. Because of this feature, proton beam radiotherapy (PBRT) has been used to escalate radiation dose to diseased tissues while minimizing damage to adjacent normal tissues. Proton beams have been used in stereotactic radiosurgery of intracranial lesions; the gamma knife and linear accelerator have also been used in stereotactic radiosurgery. Proton beam radiotherapy has been shown to be particularly useful in treating radiosensitive tumors that are located next to vital structures, where complete surgical excision or administration of adequate doses of conventional radiation is difficult or impossible.

Policy Statement and Criteria

1. Commercial Plans

 U of U Health Plans covers proton beam therapy (PBT) in the following limited circumstances:

 A. Chordomas or chondrosarcomas arising at the base of the skull or along the axial skeleton without distant metastases;
 B. Other central nervous system tumors located near vital structures;
 C. Localized, unresectable hepatocellular Carcinoma;
D. Ocular tumors including intraocular/uveal melanoma (not distant metastases);
E. Intracranial arteriovenous malformation (AVM) not amenable to surgical excision or other conventional forms of treatment;
F. Pediatric (under 18 years of age) central nervous system or solid tumors.

U of U Health Plans does NOT cover proton beam radiotherapy for treatment of prostate cancer. It is not medically necessary for individuals with localized prostate cancer because it has not been proven to be more effective than other radiotherapy modalities for this indication. Proton beam therapy for metastatic prostate cancer is considered experimental and investigational.

U of U Health Plans does NOT cover proton beam therapy for any other indication as use in any other circumstance is unproven and considered investigational.

2. **Medicaid Plans**

Coverage is determined by the State of Utah Medicaid program; if Utah State Medicaid has no published coverage position and InterQual criteria are not available, the U of U Health Plans Commercial criteria will apply. For the most up-to-date Medicaid policies and coverage, please visit their website at http://health.utah.gov/medicaid/manuals/directory.php or the **Utah Medicaid code Look-Up tool**

Clinical Rationale

The issues related to coverage of proton beam therapy (PBT) as a treatment of various medical conditions is not isolated to the safety and efficacy of the therapy. Given the greatly increased costs of this therapy compared to standard electron beam therapy and other therapies used to treat the various conditions is employed on, it is equally important to assess the cost effectiveness of proton beam therapy compared to other therapies used to treat similar conditions.

Published systematic reviews have been fairly uniform in their position as it relates to PBT. In 2010 the Agency for Healthcare Research and Quality (AHRQ) published guidelines on PBT for treating a variety of cancers in the adult and pediatric populations. The tumor sites considered for treatment referral include a specific list on CNS (Central Nervous System) and non-CNS tumors, with a disclaimer that individual patients should be discussed on a case-by-case basis. PBT is generally not recommended in cases of prostate cancer, non-small cell lung cancer, or most lymphomas based on insufficient evidence.

The AHRQ findings were further supported by a report by the Canadian Agency for Drugs and Technologies in Health (CADTH, 2016) which found: "Two systematic reviews of clinical evidence, two systematic reviews of economic evidence, and one primary economic evaluation were identified regarding the clinical and cost-effectiveness of proton beam therapy compared to photon radiotherapy for the treatment of cancer patients. There was limited comparative evidence, with insufficient evidence available for many indications, comparators, and outcomes. Comparable benefits and harms were demonstrated by most studies for the majority of outcomes in prostate, esophageal, lung, and breast cancer, as well as medulloblastoma, and pediatric brain tumors. An increased risk of patient harms was observed for some outcomes in breast, esophageal, prostate and lung cancer. As well, reduced survival was reported for spinal cord gliomas. Reduced harms were reported for some outcomes in patients with
medulloblastoma, as well as lung, esophageal, and prostate cancer, and pediatric retinoblastoma. There was insufficient evidence to draw conclusions for recurrent liver and brain cancers, menigioma, head and neck cancers, uveal hemangioma, and for the outcome of secondary malignancies. The identified economic evidence is likely not generalizable to the Canadian context, and may not reflect accurate and up-to-date cost and benefit estimates. Most evaluations reported that PBT was not cost-effective; however, the technology was more likely to be cost-effective in pediatric populations, and under specific circumstances in younger adults, and patients with more advanced disease (e.g., high risk head and neck, lung cancer, and breast cancer patients). Overall, current comparative evidence does not suggest that PBT is superior to photon therapy from a clinical or cost perspective for the majority of indications. There are concerns regarding the quantity, quality and generalizability of the available evidence. Current ongoing studies and future investigation into differences in hard clinical endpoints and long-term outcomes may resolve some of this uncertainty."

In 2017 ECRI (Emergency Care Research Institute) and CADTH again published reports related to PBT. The former stated that while PPBT has been used for several solid cancer tumor types in adults and certain pediatric cancers, including breast, lung, prostate, head and neck, evidence is still lacking in regards to its benefits over Photon based external beam radiation therapy.

Whereas CADTH found: "A review of the clinical evidence from nine systematic reviews found that PBT, alone or in combination with photon radiotherapy, is comparable to other types of radiotherapy for most types of cancer. Exceptions include menigioma and subgroups of malignant meningioma, and poorly differentiated tumors of prostate cancer in adults, for which greater benefits were found with PBT; some intramedullary spinal cord glioma in both children and adults, for which lower benefits were found with PBT; and eye cancer in adults, for which both greater benefits and lower benefits, depending on the specific type of eye cancer, were found with PBT. The clinical evidence also found that the safety of PBT, alone or in combination with photon radiotherapy, varies by the type of cancer it is used to treat, compared with other types of radiotherapy. It was found to be associated with greater harms in breast cancer and prostate cancer in adults; lower harms in retinoblastoma in children and medulloblastoma in adults; and both greater harms and lower harms in adults depending on the specific type of the following cancers: esophageal cancer, optic nerve sheath menigioma, and lung cancer."

An Emerging Technology Committee from ASTRO (American Society for Radiation Oncology) concluded that current data does not provide sufficient evidence to recommend PBT outside of clinical trials in lung cancer, head and neck cancer, GI malignancies (with the exception of hepatocellular carcinoma) and pediatric non-central nervous system (CNS) malignancies (Allen et al., 2012). In hepatocellular carcinoma and prostate cancer, there is evidence of the efficacy of PBT but no suggestion that it is superior to photon based approaches. In pediatric CNS malignancies, PBT appears superior to photon approaches, but more data is needed. In large ocular melanomas and chordomas, ASTRO states that there is evidence for a benefit of PBT over photon approaches. More robust prospective clinical trials are needed to determine the appropriate clinical setting for PBT.

ASTRO’s model policy for PBRT (2017) addresses indications and limitations of coverage and/or medical necessity for PBRT in the treatment of prostate cancer. Although more individuals with prostate cancer have been treated with PBRT compared to any other cancer site, ASTRO does not support the routine use of PBRT for prostate cancer, stating: In the treatment of prostate cancer, the use of PBT is evolving as the comparative efficacy evidence is still being developed. In order for an informed consensus on the role of PBT for prostate cancer to be reached, it is essential to collect further data, especially to understand how the effectiveness of proton therapy compares to other radiation therapy modalities such as IMRT and brachytherapy. There is a need for more well-designed registries and studies with sizable comparator cohorts to help accelerate data collection. Proton beam therapy for primary
treatment of prostate cancer should only be performed within the context of a prospective clinical trial
or registry.

Prostate Cancer NCCN’s clinical practice guideline (CPG) on “Prostate cancer” (Version 4.2018) states
that “The NCCN panel believes no clear evidence supports a benefit or decrement to proton therapy
over IMRT for either treatment efficacy or long-term toxicity.” Also, both photon and proton beam
radiation have similar and acceptable biochemical control and long-term side effects, as well as being
effective at achieving highly conformal radiotherapy. The guidelines also included “conventionally
fractionated prostate proton therapy can be considered a reasonable alternative to x-ray based
regimens at clinics with appropriate technology, physics, and clinical expertise.”

In 2014, the Agency for Healthcare Research and Quality (AHRQ) published an update of the 2008
comparative effectiveness review for localized prostate cancer (Sun, 2014). The risk and benefits were
compared in a number of treatments for localized prostate cancer including radical prostatectomy, EBRT
(standard therapy as well as PBRT, 3D-CRT, IMRT and SBRT), interstitial brachytherapy, cryotherapy,
watchful waiting (WW), active surveillance, hormonal therapy, and high-intensity focused ultrasound
(HIFU). Eight randomized controlled trials and 44 nonrandomized comparative studies evaluating
numerous treatment options met inclusion criteria. The authors concluded that the evidence for most
treatment comparisons is largely inadequate to determine comparative risks and benefits of therapies
for clinically localized prostate cancer. This conclusion is similar to that of the 2008 review, which found
that no single therapy can be considered the preferred treatment for localized prostate cancer because
of limitations in the body of evidence as well as the likely tradeoffs a patient must make between
estimated treatment effectiveness, necessity, and adverse effects. Although limited evidence appears to
favor surgery over WW or external beam radiotherapy, or favors 3D-CRT plus ADT over 3D-CRT alone,
the patients most likely to benefit and the applicability of these study findings to contemporary patients
and practice remain uncertain. More RCTs and better designed observational studies that can control for
many of the known and unknown confounding factors that can affect long-term outcomes are needed
to evaluate comparative risks and benefits of therapies for clinically localized prostate cancer.

Non-cell Lung Cancer (NSCLC) A Hayes 2017 technology report on PBT for NSCLC, concluded that the
best available studies of PBT for NSCLC, including 1 fair-quality study and 11 poor-quality studies do not
provide sufficient evidence that PBT is safer or consistently more effective than conventional methods
of radiation therapy. Findings are somewhat conflicting, but in general, PBT, CRT, and IMRT appear to
have approximately the same safety and efficacy for NSCLC. Three nonrandomized studies compared
PBT with CBT for lung cancer and found similar efficacy and safety outcomes with these 2 techniques.
However, CBT is not a widely available or well-studied technology. One large retrospective comparative
database study showed that PBT was significantly more efficacious with regard to overall survival than
other non-PBT radiotherapies, except for IMRT. However, in a propensity score–matched analysis, the
trend toward improvement was not significant. Two other nonrandomized studies evaluated lung cancer
treatment with PBT versus CRT or IMRT and found inconsistent or no statistically significant differences
in patient survival. A nonrandomized study found that PBT was associated with a significantly
reduction in esophagitis compared with IMRT; however, 4 other nonrandomized studies of PBT versus
CRT or IMRT found no significant differences or largely offsetting differences in the incidence of
complications.

Uveal Melanoma The 2017 CADTH Technology Assessment included two unique primary studies,
analyzed in two SRs, reporting on PBT for treatment of uveal melanoma. In one study, statistically
significantly lower rates of local recurrence and higher mortality rate were reported for PBT in
comparison to brachytherapy for choroidal melanoma. In the other study, there were late recurrences
following brachytherapy but not after PBT or helium ion RT, but statistical results were not reported. The assessment authors concluded that there were both greater and lower benefits of PBT for eye cancers. The 2014 Washington Technology Assessment reviewed two studies on the use of PBT for ocular tumors that compared PBT alone to combination therapy including PBT. PBT was compared to PBT plus chemotherapy for uveal melanoma. Overall survival was reported and there was no statistically significant difference between groups. PBT was compared to PBT plus laser photocoagulation for choroidal melanoma. Visual acuity was reported and there was no statistically significant difference between groups.

Verma and Mehta published a systematic review of fourteen studies reporting clinical outcomes of proton beam radiotherapy (PBT) for uveal melanoma in 2016. Studies occurring between 2000 and 2015 were included; review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Metaanalyses were not conducted due to substantial methodological heterogeneity between studies. Included studies enrolled 59 to 3088 patients, median follow-up ranged from 38 to 148 months, and most tumors were choroidal and medium to medium-large-sized, and received 50-70 Cobalt Gray equivalent dose (studies conducted more recently reported lower doses). Five-year local control, overall survival, and metastasis-free survival and disease-specific survival rates were >90% (persisting at ten and fifteen years), 75 to 90%, and between 7 and 10%. The authors concluded that although PBT is associated with low toxicity and enucleation rates, recent developments to support radiation toxicity will aid in decreasing clinical adverse events, and overall, PBT is an excellent treatment for uveal melanomas.

Chondrosarcoma is the second most frequent primary malignant tumor of bone, representing approximately 25% of all primary osseous neoplasms. Chondrosarcoma may occur at any age, but is more common in older adults. Chondrosarcomas are a group of tumors with highly diverse features and behavior patterns, ranging from slow-growing non-metastasizing lesions to highly aggressive metastasizing sarcomas. Although the long bones (legs, arms, fingers, and toes), pelvis and shoulder blades are most commonly involved, occasionally chondrosarcoma has been found in the spine or skull bones. Symptoms of chondrosarcoma are usually mild and depend upon size and location. Individuals with pelvic or axial lesions typically present later in the disease course, as the associated pain has a more insidious onset and often occurs when the tumor has reached a significant size. Histologic grade and tumor locations are the most important variable that determines the choice of the primary treatment. The mainstay of treatment is surgical resection for both low-grade and high-grade lesions, as chondrosarcomas respond poorly to chemotherapy. Because residual, localized low-grade base of skull chondrosarcomas may impinge upon the brain stem or spinal cord and can invade central nervous system tissue, PBRT, either alone or in combination with photon beam radiotherapy, has been associated with excellent local control and long-term survival in the treatment of individuals with chondrosarcomas of the skull base and axial skeleton (NCCN, V1.2017).

Pediatrics Indications Amsbaugh (2012) reported acute toxicities and preliminary outcomes for pediatric patients with ependymomas of the spine treated with proton beam therapy at the MD Anderson Cancer Center. A total of 8 pediatric patients received proton beam irradiation between October 2006 and September 2010 for spinal ependymomas. Toxicity data were collected weekly during radiation therapy and all follow-up visits. Toxicities were graded according to the Common Terminology Criteria for Adverse Events version 3.0. All patients had surgical resection of the tumor before irradiation (7 subtotal resection and 1 gross total resection). Six patients had World Health Organization Grade I ependymomas, and 2 had World Health Organization Grade II ependymomas. Patients had up to 3 surgical interventions before radiation therapy (range of 1 to 3; median, 1). Three patients received proton therapy after recurrence and 5 as part of their primary management. The entire vertebral body
was treated in all but 2 patients. The mean radiation dose was 51.1 cobalt gray equivalents (range of 45 to 54 cobalt gray equivalents). With a mean follow-up of 26 months from the radiation therapy start date (range of 7 to 51 months), local control, event-free survival, and overall survival rates were all 100%. The most common toxicities during treatment were Grade 1 or 2 erythema (75%) and Grade 1 fatigue (38%). No patients had a Grade 3 or higher adverse event. Proton therapy dramatically reduced dose to all normal tissues anterior to the vertebral bodies in comparison to photon therapy. The authors concluded that preliminary outcomes showed the expected control rates with favorable acute toxicity profiles. They noted that proton beam therapy offers a powerful treatment option in the pediatric population, where adverse events related to radiation exposure are of concern. Moreover, they stated that extended follow-up will be required to assess for late recurrences and long-term adverse effects.

Greenberger et al (2014) reported their experience with pediatric patients treated with PBT. A total of 32 pediatric patients with low-grade gliomas of the brain or spinal cord were treated with PBT from 1995 to 2007; 16 patients received at least 1 regimen of chemotherapy before definitive radiotherapy (RT). The median radiation dose was 52.2 GyRBE (48.6 to 54 GyRBE). The median age at treatment was 11.0 years (range of 2.7 to 21.5 years), with a median follow-up time of 7.6 years (range of 3.2 to 18.2 years). The 6-year and 8-year rates of progression-free survival were 89.7% and 82.8%, respectively, with an 8-year overall survival of 100%. For the subset of patients who received serial neurocognitive testing, there were no significant declines in Full-Scale Intelligence Quotient (p = 0.80), with a median neurocognitive testing interval of 4.5 years (range of 1.2 to 8.1 years) from baseline to follow-up, but subgroup analysis indicated some significant decline in neurocognitive outcomes for young children (less than 7 years) and those with significant dose to the left temporal lobe/hippocampus. The incidence of endocrinopathy correlated with a mean dose of greater than or equal to 40 GyRBE to the hypothalamus, pituitary, or optic chiasm. Stabilization or improvement of visual acuity was achieved in 83.3% of patients at risk for radiation-induced injury to the optic pathways. The authors concluded that this report of late effects in children with low-grade gliomas after PBT is encouraging. Proton beam therapy appears to be associated with good clinical outcome, especially when the tumor location allows for increased sparing of the left temporal lobe, hippocampus, and hypothalamic-pituitary axis. The authors also stated that larger cohorts are likely needed to enable accurate assessment of the incidence of moyamoya disease after PBT.

In June 2017, ASTRO published an updated model policy addressing treatment planning, indications (and limitations), and medical necessity criteria for PBT. The document states that “PBT is considered reasonable in instances where sparing the surrounding normal tissue cannot be adequately achieved with photon-based radiotherapy and is of added clinical benefit to the patient.” ASTRO’s “coverage decision may extend beyond ICD-10 codes to incorporate additional considerations of clinical scenario and medical necessity with appropriate documentation, which in certain circumstances may include comparative dose volume histograms.” ASTRO has structured their recommendations for the appropriate use of PBT for various disease sites into 2 groups (Group 1 and Group 2 indications). For Group 1 disease sites, based on the defined medical necessity requirements and published clinical data, the following disease sites that frequently support the use of PBT:

1. Ocular tumors, including intraocular melanomas
2. Tumors that approach or are located at the base of skull, for example Chordomas and Chondrosarcomas
3. Primary or metastatic tumors of the spine where the spinal cord tolerance may be exceeded with conventional treatment or where the spinal cord has previously been irradiated
4. Hepatocellular cancer
5. Primary or benign solid tumors in children treated with curative intent and occasional palliative
treatment of childhood tumors when at least one of the four criteria noted above apply Patients
with genetic syndromes making total volume of radiation minimization crucial such as but not
limited to NF-1 patients and retinoblastoma patients
6. Malignant and benign primary CNS tumors
7. Advanced (e.g., T4) and/or unresectable head and neck cancers
8. Cancers of the paranasal sinuses and other accessory sinuses
9. Non-metastatic retroperitoneal sarcomas
10. Re-irradiation cases (where cumulative critical structure dose would exceed tolerance dose)

Group 2 includes various systems including but not limited to:

1. Non-T4 and resectable head and neck cancers
2. Thoracic malignancies, including non-metastatic primary lung and esophageal cancers, and
mediastinal lymphomas
3. Abdominal malignancies, including non-metastatic primary pancreatic, biliary and adrenal
cancers
4. Pelvic malignancies, including non-metastatic rectal, anal, bladder and cervical cancers
5. Non-metastatic prostate cancer
6. Breast cancer

Proton Beam Therapy is not a new technology, however there is still a need for comparative
effectiveness analysis and clinical evidence development for the appropriate use on various disease
sites. According to ASTRO all other indications not listed in Group 1 are acceptable for Coverage with
Evidence Development (CED). Group 2 includes various systems and at this time, with no indications
deemed inappropriate for CED are considered acceptable. As long as the patient is enrolled in either an
institutional review board (IRB)-approved study or in a multi-institutional registry following Medicare
requirements. Insurance carriers should cover radiation therapy for patients treated under the CED
model.

Coverage under CED requirements will help accelerate and establish coverage decisions for all
indications. Because of the many studies under way, proton coverage policies will need to be reviewed
on a continual basis.

Applicable Coding

CPT Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>77520</td>
<td>Proton treatment delivery; simple, without compensation</td>
</tr>
<tr>
<td>77522</td>
<td>Proton treatment delivery; simple, with compensation</td>
</tr>
<tr>
<td>77523</td>
<td>Proton treatment delivery; intermediate</td>
</tr>
<tr>
<td>77525</td>
<td>Proton treatment delivery; complex</td>
</tr>
</tbody>
</table>

HCPCS Codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S8030</td>
<td>Scleral application of tantalum ring(s) for localization of lesions for proton beam therapy</td>
</tr>
</tbody>
</table>
References:

Disclaimer:
This document is for informational purposes only and should not be relied on in the diagnosis and care of individual patients. Medical and Coding/Reimbursement policies do not constitute medical advice, plan preauthorization, certification, an explanation of benefits, or a contract. Members should consult with appropriate health care providers to obtain needed medical advice, care, and treatment. Benefits and eligibility are determined before medical guidelines and payment guidelines are applied. Benefits are determined by the member’s individual benefit plan that is in effect at the time services are rendered. The codes for treatments and procedures applicable to this policy are included for informational purposes. Inclusion or exclusion of a procedure, diagnosis or device code(s) does not constitute or imply member coverage or provider reimbursement policy. Please refer to the member’s contract benefits in effect at the time of service to determine coverage or non-coverage of these services as it applies to an individual member.